

ACTUALIZACIÓN DEL CATASTRO URBANO, MEDIANTE EL USO DE VANT Y TÉCNICAS DE FOTOGRAMETRÍA ESTÉREO

Esp. Ing. Agrim. Alvarez Parma Gabriela F. Esp. Ing. Agrim. Graffigna Emilio D. Ing. Agrim. Munizaga Roger A.

9, 10 y 11 | OCTUBRE 2019

Hotel Sheraton | Mendoza - Argentina

- Ejecución de un relevamiento fotogramétrico con tecnología VANT (vehículo aéreo no tripulado), y su posterior procesamiento fotogramétrico y control de terreno.
- Actualización del catastro territorial en su aspecto de construcciones existentes

Especificaciones técnicas georreferenciación:

Coordenadas relevadas y productos: georreferenciaron según el Marco de Referencia POSGAR 2007, utilizando como base de vinculación EP - UNSJ de la Red RAMSAC.

Las coordenadas planas se refieren a la Proyección Cartográfica Gauss Krüger Faja 2 (POSGAR 2007), alturas al nivel medio del mar según el modelo de geoide GEOIDE-Ar 16.

TAREAS DESARROLLADAS

Relevamiento aéreo:

- Vehículo aéreo no tripulado de ala fija de uso profesional específico para mapeo, Marca Delair Tech modelo UX5 HP
- Instrumental GNSS doble frecuencia

TAREAS DESARROLLADAS

Relevamiento aéreo:

- Tamaño de pixel sobre el terreno (GSD): 6 cm.
- Superposición longitudinal y trasversal del 80%.
- Las sesiones de vuelo se planificaron en gabinete, adaptadas en el terreno Fecha: 28 de agosto 2018 (entre las 10 y 12 horas).
- Resultado: 931 fotografías (una sesión de vuelo), orientación aproximada NE-SE y SE-NE. Buenas condiciones de luminosidad con cielo totalmente despejado para el total de la zona.

9, 10 y 11 | OCTUBRE 2019 Hotel Sheraton | Mendoza - Argentina

TAREAS DESARROLLADAS

Proceso fotogramétrico:

- · Definición de parámetros del proyecto:.
- Incorporación de las fotografías al entorno del programa.
- Incorporación de datos orientación externa de las imágenes (imagenes longitud, altura, yaw, pitch, roll).
- · Orientación relativa de cada imagen respecto de las imágenes q
- · Calibración del sensor en función de los datos de terreno.
- · Cálculo del ajuste y aerotriangulación.
- Extracción masiva de puntos x,y,z.
- · Generación del modelo digital de elevación.
- · Restitución de las edificaciones y mejoras de manera estereoso
- · Ortorrectificación y mosaico de las imágenes.
- · Construcción de la base de datos.

Procesamiento : Photomod 5.3 Resolución espacial mosiaco: 10 cm

posicional de la ortofoto y

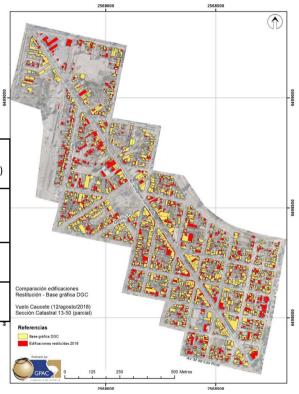
productos derivados

RESULTADOS: Base de datos

Tipo	Cantidad	Sup. mínima (m2)	Sup. máxima (m2)	Sup. media (m2)	Subtotal de superficie (m2)
Cubierto	1912	1,10	673,38	75,56	144465,18
En Construcción	40	5,45	424,72	66,91	2676,55
Galpón	83	32,84	1362,25	245,52	20378,23
Invernadero	4	7,53	97,16	31,39	125,54
No Asignado	4	12,47	25,61	16,03	64,12
Piscina	51	2,99	45,16	15,15	772,68
Semi cubierto	1519	0,97	279,04	22,20	33721,10
Sin Valor	218	2,15	164,79	29,93	6523,90
Tanque	6	6,12	16,58	8,88	53,25
Tinglado	86	9,29	711,50	127,10	10930,18
Totales	3923				219710,74

RESULTADOS: Detección de cambios

Base de datos Cantidad Minima Máxima Media superficie (m²) (m²) (m²) (m²)

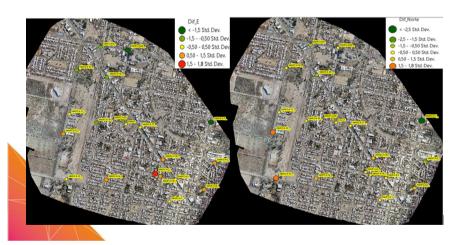

Edificación
Restitución 3923 0.96 1362,25 63,86 219710,74
(GPAC)

Edificación 2144 0.87 1366,98 66,62 142823,97

(DGC) 2144 0.87 1366,98 66,62 142823,97

Alfanumérica (DGC) 1238 1.00 1414,11 83,13 102919,44

Incremento de un 114% respecto de la base alfanumérica (116791,3 m3).


RESULTADOS: Control de calidad posicional

ASPRS Positiona	al Accuracy Standards for Digital Geospatial Data			
Aplicaciones corrientes	Es un estándar reciente (2015), propuesto por la Asociación Americana de Fotogrametría y Sensores Remotos. Reemplaza a estándares de precisión ASPRS para mapas a gran escala (1990) Directrices de ASPRS, informes de precisión vertical para datos Lidar (2004). El estándar está destinado a ser utilizado por los proveedores de datos geoespaciales y los usuarios para especificar los requisitos de precisión posicional para productos geoespaciales finales.			
Método de comparación	Con fuentes de mayor exactitud			
Componente posicional	Horizontal y vertical			
Clase de elementos	Puntos			
Descripción	Analiza tanto la componente horizontal (x,y de forma conjunta), como la componente vertical. La precisión horizontal debe evaluarse usando estadísticas de error medio cuadrático (RMSE) en el plano horizontal, es decir, RMSEx, RMSEy y RMSEr. La precisión vertical debe evaluarse solo en la dimensión z según el tipo de cobertura del terreno. Define clases de precisión específicas y umbrales EMC asociados para ortoimágenes, datos planimétricos digitales y datos digitales de elevación.			

RESULTADOS: Control de calidad posicional

Positional Accuracy Standards for Digital Geospatial Data (ASPRS, 2014)

Punto	Dif_E	Dif_Norte	
base1	-0,009	0,020	
MARCA1	0,000	0,000	
MARCA2_	0,166	0,021	
MARCA3	-0,058	0,022	
MARCA4_	0,078	0,080	
MARCA5_	0,120	-0,058	
MARCA7_	-0,210	-0,265	
MARCA8A_	-0,194	0,013	
MARCA9_	-0,166	-0,066	
MARCA10_	-0,092	0,053	
MARCA11_	-0,076	0,055	
MARCA12_	0,112	0,204	
MARCA13_	-0,032	0,213	
MARCA14_	0,050	0,150	
MARCA15_	0,052	0,021	
MARCA16_	0,062	0,093	
·			

ASPRS Positional Accuracy Standards for Digital Geospatial Data $EMC_X = \sqrt{\frac{\Sigma e_{x_i}^2}{n}} = 0,108$ $EMC_Y = \sqrt{\frac{\Sigma e_{y_i}^2}{n}} = 0,104$ $EMC_Y = \sqrt{\frac{EMC_Y}{n}} = 0,104$ $EMC_Y = \sqrt{\frac{EMC_Y}{n}} = 0,104$ $EMC_Y = \sqrt{\frac{EMC_Y}{n}} = 0,118$

$$MC_X = \sqrt{\frac{\Sigma e_{x_i}^2}{n}} = 0,108$$
 $EMC_Y = \sqrt{\frac{\Sigma e_{y_i}^2}{n}} = 0,104$ $EMC_T = \sqrt{EMC_X^2 + EMC_Y^2} = 0,118$

Horizontal Accuracy Class	RMSE _X and RMSE _y (cm)	RMSE _r (cm)	Horizontal Accuracy at 95% Confidence Level (cm)	
X-cm	≤X	≤1.41*X	≤2.45*X	
10 cm	≤ 10 cm	≤ 14,1 cm	≤ 24,5 cm	
12,5 cm	≤ 12,5 cm	≤ 17.7 cm	≤ 30 ,6 cm	

"Este conjunto de datos fue testeado para cumplir con las Normas de Exactitud Posicional para datos Geoespaciales Digitales ASPRS 2014 para una clase de precisión horizonal EMCx/EMCy=12,5 cm. Se encontró que la precisión posicional real era RMSEx = 10,8 cm y RMSEy = 10,4 cm, lo que equivale a +/- 30,6 cm a un nivel de confianza del 95% "

Ejemplos de precisión horizontal / calidad para datos planimétricos digitales de altarprecisión raton Mendoza-Argentina

ASPRS 2014			Equivalente a la escala del mapa en			
Clase de precisión horizontal RMSEx y RMSEy (cm)	RMSE _r (cm)	Precisión horizontal en el nivel de confianza del 95% (cm)	Aproximadamente GSD de imágenes de origen (cm)	ASPRS 1990 Class 1	ASPRS 1990 Class 2	Equivalente a la escala del mapa en NMAS
0.63	0.9	1.5	0.31 a 0.63	1:25	1:12.5	1:16
1.25	1.8	3.1	0.63 a 1.25	1:50	1:25	1:32
2.5	3.5	6.1	1.25 a 2.50	1:100	1:50	1:63
5.0	7.1	12.2	2.50 a 5.00	1:200	1:100	1:127
7.5	10.6	18.4	3.80 a 7.50	1:300	1:150	1:190
10.0	14.1	24.5	5.00 a 10.0	1:400	1:200	1:253
12.5	17.7	30.6	6.30 a 12.5	1:500	1:250	1:317
15.0	21.2	36.7	7.50 a 15.0	1:600	1:300	1:380
17.5	24.7	42.8	8.80 a 17.5	1:700	1:350	1:444
20.0	28.3	49.0	10.0 a 20.0	1:800	1:400	1:507
22.5	31.8	55.1	11.3 a 22.5	1:900	1:450	1:570
25.0	35.4	61.2	12.5 a 25.0	1:1000	1:500	1:634
27.5	38.9	67.3	13.8 a 27.5	1:1100	1:550	1:697
30.0	42.4	73.4	15.0 a 30.0	1:1200	1:600	1:760

CONCLUSIONES

- El uso de la tecnología de los VANT, de cámaras fotográficas con características aptas para la fotogrametría, junto con las técnicas de restitución estereoscópica, permite obtener resultados en forma eficiente, eficaz y oportuna para la actualización de los catastros urbanos de las características de la zona relevada.
- La combinación de tecnología y técnicas de procesamiento, permitió lograr la actualización del catastro en el área de estudio, en su aspecto de construcciones.
- La posibilidad de restituir los rasgos gráficos en tres dimensiones (estereoscopía), permite alcanzar un alto grado de discriminación de los polígonos que representan las construcciones y mejoras para la posterior construcción de una base de datos espacial.

CONCLUSIONES

- Para una mejor organización de los datos relevados, se requiere de una simplificación en la caracterización de las construcciones
- El uso de VANTs con un sistema de registro de las posiciones del vuelo, y el empleo de una base de medición de referencia, permite realizar la orientación exterior del bloque de imágenes de manera precisa, sin la necesidad de realizar marcas pre-vuelo para el apoyo fotogramétrico. Sin embargo se recomiendan trabajos de control de calidad que verifiquen las precisiones en la georreferenciación de los productos finales.
- El control de calidad temático de la cartografía (control de la clasificación), requiere de la
 inspección en terreno de un número determinado de muestras accediendo en forma
 directa a las parcelas; resultando insuficiente la visualización desde la vía pública. La
 manera de realizar la estimación de este control a futuro; es en función de los registros de
 los reclamos que pudieran hacer los contribuyentes y cotejarlos con los datos obtenidos
 de la restitución.

CONCLUSIONES

 La introducción de nuevas tecnologías de relevamientos masivos de datos, y la necesidad de contar con cartografía oportuna, eficaz y eficiente, plantea desafíos a las Instituciones Catastrales, porque no solo se debe definir un estándar operativo de trabajo, sino también realizar algunas reestructuraciones en los registros de las bases de datos, en particular las mejoras.

